Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Min Hong, Han-Dong Yin* and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: handongyin@lctu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.008 Å R factor = 0.037 wR factor = 0.091 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 9 May 2006 Accepted 12 May 2006

Bis[µ-furan-2-carbaldehyde (1-carboxyethylidene)hydrazonato(2–)]bis[methanoldimethyltin(IV)]

In the title complex, $[Sn_2(CH_3)_4(C_8H_6N_2O_4)_2(CH_4O)_2]$, each Sn^{IV} ion exists in a distorted pentagonal-bipyramidal coordination environment, coordinated by three O atoms and one N atom from the pyruvic acid 2-furoic acid hydrazone ligands, one O atom from a methanol molecule and two axial C atoms from *trans* methyl groups, thus forming a dimeric molecule, which has crystallographic $\overline{1}$ symmetry. In the dimeric structure there are also intramolecular hydrogen bonds, which contribute to the crystal stability and compactness.

Comment

Fig. 1 demonstrates that, in this complex, the Sn atom exists in a distorted pentagonal-bipyramidal coordination environment in which one methanol molecule, two tridentate pyruvic acid 2-furoic acid hydrazone ligands, and two *trans* methyl groups coordinate to each Sn center. The atoms O1, O5, O1ⁱ, O3 and N1 are coplanar to within 0.0302 Å [symmetry code: -x, -y + 2, -z], and form the equatorial plane. The inter-axial angle C9–Sn1–C10 is 163.0 (2)°, which deviates from the ideal value of 180°. Atom O1 of the carboxylate residue also binds another Sn atom, Sn1ⁱ, generating an Sn₂O₂ fourmembered ring. Thus, the structure of this complex can be described as a dimer, with crystallographically imposed $\overline{1}$ symmetry.

Each Sn atom is also coordinated by a methanol molecule. The Sn–O methanol bond distance [2.409 (4) Å] is longer than those in some analogues (Yin *et al.*, 2003; Parulekar *et al.*, 1989), owing to the formation of intramolecular hydrogen bonds (as in Hong *et al.*, 2005). These hydrogen bonds (Fig. 2) contribute to the crystal stability and compactness.

Experimental

Pyruvic acid 2-furoic acid hydrazone (1 mmol) and sodium ethoxide (1 mmol) were added to dry benzene (20 ml) in a Schlenk flask and stirred for 0.5 h. Dimethyltin dichloride (1 mmol) was added to the reactor; the reaction mixture was stirred for 12 h at 313 K and then filtered. The solvent was gradually removed by evaporation under

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

vacuum until a solid product was obtained. The solid was then recrystallized from methanol and colourless crystals suitable for X-ray diffraction were obtained (m.p. 381.5 K). Elemental analysis calculated for $C_{11}H_{16}N_2O_5Sn$: C 35.24, H 4.30, N 7.47; found: C 35.11, H 4.23, N 7.60%.

Z = 8

 $D_x = 1.752 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 1.81 \text{ mm}^{-1}$

Block, colourless

 $0.23 \times 0.15 \times 0.12 \text{ mm}$

7350 measured reflections

2538 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2]$

+ 1.0171*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.40~{\rm e}~{\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.011$

1798 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int}=0.039$

 $\theta_{\rm max} = 25.1^\circ$

Crystal data

 $[Sn_2(CH_3)_4(C_8H_6N_2O_4)_2(CH_4O)_2]$ $M_r = 374.95$ Monoclinic, C2/c a = 20.794 (19) Å b = 9.911 (9) Å c = 14.142 (13) Å $\beta = 102.658$ (15)° V = 2844 (5) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.680, T_{\max} = 0.812$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.091$ S = 1.002538 reflections 180 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Sn1-C9	2.082 (6)	Sn1-O1	2.316 (4)
Sn1-C10	2.098 (6)	Sn1-O5	2.409 (4)
Sn1-O3	2.178 (4)	Sn1-O1 ⁱ	2.747 (4)
Sn1-N1	2.248 (4)		
C9-Sn1-C10	163.0 (2)	C9-Sn1-O5	86.8 (2)
C9-Sn1-O3	95.7 (2)	C9-Sn1-O1 ⁱ	82.67 (19)
C9-Sn1-N1	94.3 (2)	O3-Sn1-O1 ⁱ	153.79 (11)
O3-Sn1-N1	70.06 (15)	N1-Sn1-O1 ⁱ	136.11 (13)
C9-Sn1-O1	89.70 (19)	O1-Sn1-O1 ⁱ	66.51 (12)
O3-Sn1-O1	139.69 (12)	O5-Sn1-O1 ⁱ	76.88 (13)

Symmetry code: (i) -x, -y + 2, -z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H1\cdots O2^i$	0.84 (6)	1.82 (6)	2.643 (6)	166 (6)
Symmetry code: (i)	-x - v + 2 - z			

H atoms attached to C atoms were all positioned geometrically and treated as riding on their parent atoms, with aromatic C–H distances of 0.93 Å and methyl C–H distances of 0.96 Å. The $U_{\rm iso}({\rm H})$ values were set at $1.5U_{\rm eq}({\rm C})$ for the methyl H atoms and at $1.2U_{\rm eq}({\rm C})$ for the other C-bound H atoms. The coordinates of the H atom bonded to O were refined, giving an O–H distance of 0.84 (6) Å; the $U_{\rm iso}({\rm H})$ value was 70 (20) Å² × 10³.

Figure 1

The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. The long Sn - O bonds are indicated by dashed lines. The suffix A corresponds to symmetry code i in Table 1.

Figure 2

The packing of the title complex. Hydrogen bonds and the long Sn-O bonds are indicated by dashed lines. H atoms have been omitted for clarity.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

Hong, M., Yin, H. D., Wang, D. Q. & Li, G. (2005). Acta Cryst. E61, m1006– m1008.

Parulekar, C. S., Jain, V. K., Das, T. K., Gupta, A. R., Hoskins, B. F. & Tiekink, E. R. T. (1989). J. Organomet. Chem. 372, 193–199.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Versions 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yin, H. D., Wang, C. H., Wang, Y., Ma, C. L. & Shao, J. X. (2003). Chem. J. Chin. Univ. 24, 68-72.